Recommended Habitat-Based Recovery Criteria for Grizzly Bear

by

Keith J. Hammer, Chairman
June 17, 1997

The largest populations of grizzly bears surviving in the lower 48 states rely upon national parks and roadless wildlands as the heart of their ecosystems. This was true when the bear was listed as "threatened" in 1975, it was true in 1982, when the initial Grizzly Bear Recovery Plan was written, and it remains true today. The 1982 Recovery Plan highlighted the importance of parks and wildlands and called them "our best benchmarks, indicative of healthy communities of plants and animals." The 1982 Recovery Plan also noted that all grizzly bear ecosystems "are being adversely affected and the time for decisions to reverse this trend is now."

Since 1975 and 1982, however, the amount of roadless wildlands available to the bear has been steadily eroded by road building and development, both within and outside of the artificial boundaries of the grizzly bear ecosystems. Scientific assessments, such as the one recently completed for the Upper Columbia River Basin, confirm the findings of the 1982 Recovery Plan: ecological integrity remains highest in parks and roadless wildlands and, correspondingly, the healthiest populations of fish, plants and animals are found in the least-roaded lands. In response, Regional Forester Hal Salwasser late last year remarked that some heavily roaded areas must be restored to their historic unroaded condition (UCRB DEIS and Missoulian news article of 12/20/96). The reclaiming of roadless wildlands is the focus of our recommendation for habitat-based recovery criteria.

While lowering road densities in grizzly bear habitat is essential, our attention to establishing acceptable road density standards for some areas must not blind us to
the need to reclaim substantial areas as absolutely roadless in order to achieve grizzly bear recovery. We must determine what amount of roadless wildlands were available to the bear when it was listed as "threatened" in 1975 and not only return to those acreages, but increase them in order to reasonably expect bear populations to increase as well. To do otherwise is to unreasonably expect more bears to survive on less habitat and ignores the 1982 Recovery Plan's call for the reversal of ecosystem degradation.

Roadless wildland reclamation efforts should be directed towards not only re-securing the core of the various grizzly bear ecosystems, but should be directed to areas needed to reconnect those ecosystems to each other, including low-elevation habitats. By reconnecting the various ecosystems as a precondition to delisting, the some 2,000 bears needed to insure long-term genetic variability in a distinct population may be distributed among the various ecosystems rather than be required within each ecosystem that remains geographically and genetically isolated.

The acreage of national parks has remained relatively constant since the grizzly bear was listed as "threatened" in 1975. Human developments within the parks, however, have created areas of high grizzly-human conflicts and consequently high bear mortality, shifting all the more importance to the maintenance and reclamation of roadless wildlands both within and outside the parks.

As a habitat-based recovery criteria, roadless wildland is relatively simple to define and measure. It is also incredibly potent in its ability to promote and maintain the land's ecological integrity, which lies at the heart of the recovery of the grizzly bear and an ever-increasing list of threatened and endangered species. Efforts to reclaim roadless wildlands for grizzly bear recovery will reap benefits for a wide range of species which share the grizzly bear ecosystem.

In this day of high-tech GIS maps, complicated road density calculations and sophisticated cumulative effects analyses, we must not lose sight of the obvious: roadless wildlands are still our best benchmark for ecological integrity. As such, they may very well be the most straightforward and meaningful habitat-based recovery criteria for the grizzly bear.